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Amplitude measurements of Faraday waves
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A light reflection technique is used to measure quantitatively the surface elevation of Faraday waves. The
performed measurements cover a wide parameter range of driving frequencies and sample viscosities. In the
capillary wave regime the bifurcation diagrams exhibit a frequency independent scaling proportional to the
wavelength. We also provide numerical simulations of the full Navier-Stokes equations, which are in quanti-
tative agreement up to supercritical drive amplitudes of«.20%. The validity of an existing perturbation
analysis is found to be limited to«,2.5%.
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I. INTRODUCTION

A sound understanding of hydrodynamic pattern form
systems is based on a balanced interplay between experi
and theory, both analytical and numerical. During the p
this concept has led to considerable progress, especial
case of Rayleigh-Be´nard convection ~RBC! or Taylor-
Couette flow~TCF!, where an amazing level of quantitativ
agreement has been achieved. Another famous examp
pattern forming systems is the Faraday experiment: Sur
waves on a free liquid-air or liquid-liquid interface are e
cited by a sinusoidal vibration of the fluid layer in vertic
direction. This system has the advantage of fairly short ti
scales in combination with a very rich bifurcation behavi
During the last 2 decades the focus in this field was on n
linear pattern selection@1–5#, secondary instabilities@6#, the
transition towards chaos@7#, droplet ejection@8# and Stokes
drift @9#. However, due to the parametric drive mechani
the mathematical description of the Faraday experimen
more complicated as compared to RBC or TCF and
quantitative understanding is less advanced yet. For insta
it was not until recently that a rigorous linear stability theo
had been developed, valid for viscous fluids and reali
boundary conditions@10#. Nowadays the predictions of th
linear theory and the experimental results agree within a
percent@11#. On the nonlinear level, however, the agreem
between theory and experiment can at best be consid
qualitative: In the framework of a weakly nonlinear pertu
bation analysis different primary surface wave patterns w
quadratic, hexagonal, etc., symmetry have been predi
@12#. Even though most of them have been found in exp
ments@4,5#, the empiric and predicted phase diagrams rev
only a qualitatitve coincidence. Moreover, other experime
operate with a two-frequency drive signal@13,14#, or at very
shallow filling heights@15# or with complex fluids@16–18#.
The resulting pattern dynamics become more complex
exotic structures like superlattices@14,15,17# or oscillons
@18# appear. In some cases a qualitative understanding b
on symmetry arguments could be obtained@15,19#.

With regard to this situation it comes as a surprise tha
systematic quantitative investigation of the system’s ma
order parameter, the surface elevation, has not been un
1063-651X/2001/63~3!/036305~9!/$15.00 63 0363
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taken yet. Such data are indispensable for a verification
any nonlinear theory. It is the aim of the present work
provide extensive experimental material in order to fill th
gap. A measurement technique is presented appropriat
quantify the surface elevation of Faraday ripples. Our m
surements cover a broad part of the parameter space exp
in recent experiments on pattern selection in the Fara
experiment. In the case of low viscosity fluids our findin
are expected to compare with the perturbation analysis
Zhang and Vina˜ls @12#—at least at a weak supercritical drive
Furthermore, a closer comparison yields a reliable estim
of the validity range of this approximation. Farther aw
from the threshold of the instability, quantitative theoretic
predictions are not available yet. Here we provide a num
cal simulation by means of a finite difference scheme. T
computation allows for two-dimensional solutions of the fu
Navier-Stokes equations. They are used for a compar
with our measurements on line patterns.

II. SYSTEM

We consider a fluid layer of thicknessh with a free sur-
face vibrated in vertical direction at a drive frequencyV. In
the frame of reference comoving with the container the l
uid is subject to a modulated gravity accelerationg
1a sin(Vt), whereg is the gravitational acceleration anda
the amplitude of the drive. The fluid, considered as be
incompressible, is characterized by the kinematic viscosityn,
the densityr, and the surface tensions. The hydrodynamic
problem is governed by the Navier-Stokes equation, in wh
the modulated gravity enters as a parametric drive. T
boundary conditions are free slip at the fluid-air interface a
no slip along the walls and the bottom of the container. Ia
exceeds a critical thresholdac(V,h,n,r,s) the surface, be-
ing plane at the beginning, undergoes the Faraday instab
and standing waves with a wave numberk appear. Usually
these waves organize themselves in the form of regular
terns of different possible symmetries~lines, squares, hexa
gons . . .!. In containers with a large lateral aspect ratio~the
ratio between container dimension to wavelength of the p
tern! the pattern selection is geometry independent a
solely governed by the nonlinearities in the equations of m
©2001 The American Physical Society05-1
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tion. In contrast, by changing the lateral container extens
one can manipulate the selection process. For instance
reducing one sidelength of a beforehand quadratic conta
a line pattern~oriented parallel to the shorter side! can even-
tually be enforced in a situation where squares would pre
otherwise. In the present paper extensive use will be mad
this geometrical selection feature.

Generically, the time dependence of the Faraday m
bifurcating out of the undisturbed plane surface is subh
monic, i.e., the surface oscillates at half the drive freque
v5V/2. The standing wave surface profileh(r ) at onset of
the instability can be written in the form

hN~r ,t !5
1

2 (
i 51

N

~Aie
iki•r1c.c.! (

n52`

1`

znein(V/2)t. ~1!

Here r5(x,y) abbreviates the horizontal coordinates. T
set of Fourier coefficients$zn% determines the subharmon
time dependence. Exactly at the onset of the instabilitya
5ac , one haszn50 for evenn, while the odd coefficients
are the components of the eigenvector related to the lin
stability problem. The spatial modes are characterized by
wave vectorsk i , each carrying an individual amplitudeAi .
These quantities are determined by the nonlinearities of
problem and—if appropriate—also by the container geo
etry. In principle thek i can have any length and orientatio
but usually they are supposed to be equally spaced on
circle uk i u5k. Then the numberN of participating modes
determines the degree of rotational symmetry of the patt
N51 corresponds to lines,N52 to squares,N53 to hexa-
gons or triangles, etc. Patterns withN.3 are no longer
translational symmetric, we refer to them as quasiperiod

III. PREWORK BY OTHER AUTHORS

A. Experiment

There exist a considerable number of measuring te
niques appropriate to investigate the surface wave dynam
They range from contacting permittivity measurements@20#
over optical systems@21# including interferometry, rada
back scattering@22# up to x-ray absorption techniques@23#.
Most of these procedures apply to gravity waves, i.e., lo
wavelength surface waves. Each of them has its own lim
tions. Either the amplitude is recorded locally in space, or
detector is too slow to resolve the temporal spectrum. On
the strongest restrictions for optical reflection techniqu
comes from the poor reflectivity of most fluid-air interface
Only a few percent of the incident light is reflected and
even smaller contribution is due to diffusive backscatteri
Since the latter is crucial for standard visualization te
niques such as holographic photography or triangula
@24#, these methods often do not work properly. One mi
think of spraying the fluid surface with tracer particles li
club moss seeds but this in turn affects the surface tensio
the surface viscosity in an uncontrollable manner. In a pai
very recent publications@25,26# the authors propose sophi
ticated methods based on a colored illumination or on
array of microlenses. A standard visualization techniq
used in several Faraday experiments is the light shadow
03630
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phy @3,4,27#. A beam of parallel light with a diameter com
parable to the container size passes through the fluid la
The deformed standing wave surface pattern with its he
and hollows acting like an array of collecting and diffusin
lenses is mapped onto a screen. However, this techniqu
restricted to very small surface deformations for which t
profile can be recovered by ray tracing. Otherwise caus
occur, which make this simple and effective method bre
down.

An alternative technique introduced by Wright, Budak
and Putterman@28# is based on intensity losses due to diff
sive scattering. These authors use Polystyrene colloid
provide light scatterers within the fluid. The transversi
light intensity, weakly modulated by the local layer thic
ness, is recorded by a high-sensitivity charge coupled de
~CCD! camera to reconstruct the surface profile. As an
ample, a snapshot is presented taken at a rather strong
amplitude within the turbulent regime.

To our knowledge, previous quantitative investigations
near-onset Faraday waves are restricted to the low-freque
regime, i.e., belowV.30 Hz. Douady@29# presents an in-
vestigation where the deflection of a thin laser beam direc
onto a wave node is recorded. To prevent the nodes fro
gradual drift, Douady uses the ‘‘rimfull technique’’ to fix th
position of the pattern relative to the container boundar
That way the structure experiences a mode discretization
tated by the container geometry. Data for the elevat
maxima and the linear relaxation timet are provided for a
silicone oil at a viscosity of 10 cS and drive frequenci
between 20 and 30 Hz.

Several other authors report amplitude measurement
small aspect ratio experiments at driving frequencies
tween 5 and 10 Hz@30–32#. In this situation a considerabl
mismatch between frequency and wavelength may oc
The resulting detuning renders the primary bifurcation h
teretic. An additional problem in these experiments is
moving contact line between the fluid and the container
may also generate a hysteresis or even induce an irreg
time dependent wave dynamics.

B. Theoretical

1. Numerical

A couple of numerical simulations on Faraday waves
worth mentioning in the present context. Zhang and Vin˜ls
@33# reduce the original full three-dimensional hydrodynam
problem to a set of two-dimensional nonlocal equations f
mulated in terms of the lateral coordinates only. This is
outcome of the so called ‘‘quasipotential approximation
which considers the bulk flow as being potential~inviscid!.
Vortical flow contributions in the viscous boundary lay
beneath the surface are accounted for by an effective bo
ary condition. Clearly this analysis is only valid for dee
layers (h→`) and restricted to the low dissipation lim
nk2/V!1. The derived equations for the surface elevat
h(r ,t) are numerically integrated by a pseudo-spectral al
rithm. The principal concern of these simulations is to obt
the most preferred pattern and to investigate its resista
against secondary instabilities. Stationary patterns with
5-2
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AMPLITUDE MEASUREMENTS OF FARADAY WAVES PHYSICAL REVIEW E63 036305
ferent rotational symmetries have been observed. In part
lar, drive frequencies at the transition between gravity a
capillary waves,V/2p.30 Hz, give rise to the most inter
esting structures: quasiperiodic pattern with a tenfold ro
tional symmetry@4#. In the capillary regime squares or line
are observed depending on the viscosity of the sample fl

A somewhat different numerical procedure has been u
by Schultzet al. @34# and Wright, Yon, and Pozrikidis@35#.
Both investigations are based on the Euler equations for
viscid fluids. Dissipation is accounted for by a phenome
logical linear damping term introduced afterward. The n
merical procedures used are, respectively, a bound
integral method and a vortex-sheet technique. That way
profile of very steep two-dimensional Faraday waves is
vestigated. Their findings comprise dimpled crests, the
mation of a plumelike shape, or the beginning of drop
ejection.

Obviously, all of the aforementioned numerical work
restricted to the low dissipation limit and to large layer thic
nesses. Indeed, we are not aware of systematic nume
simulations for viscous fluids on the basis of the full hydr
dynamic equations and boundary conditions.

2. Analytical

The first step toward a theoretical understanding of p
tern forming systems is a linear stability analysis. This giv
access to the threshold amplitudeac , the critical wave num-
ber kc , and the most unstable mode. For mathematical c
venience it is popular to assume laterally infinite geometr
Although it is known for a long time that the stability prob
lem for Faraday waves can be approximately mapped
parametrically driven pendulum@36#, a rigorous stability
analysis for viscous fluids dates back until recently@10#.
Quantities evaluated by this method will be referred to in
following as ‘‘results of the exact stability analysis.’’

A nonlinear analysis suitable to predict the selected s
face pattern just above the primary instability has been p
sented by Zhang and Vina˜ls @12#. They start form their re-
duced two-dimensional set of quasipotential equations~see
Sec. III B 1! and perform a perturbation analysis for sm
supercritical drive«5(a2ac)/ac!1. The analysis can be
understood as a double expansion in« and in the dimension-
less damping parameterg5nk2/V!1. Sinceh→` is as-
sumed, vortical flow contributions coming from the visco
boundary layer along the bottom of the container are
nored. The pattern wavelength 2p/k is approximated by the
inviscid dispersion relation

S V

2 D 2

5gk1
s

r
k3. ~2!

Later on the work by Zhang and Vina˜ls has been extended b
Chen and Vina˜ls @37# for values of the damping paramet
g.1. However, since their calculated amplitudes cannot
given in a closed analytical form, we were unable to comp
our results with their predictions.

In our experiments the damping parameter is 0.1,g
,0.2 for the low viscosity sample S1 and lies between
and 1.7 for probe S2. Accordingly, the wave numberk evalu-
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ated by Eq.~2! for S1 agrees within 1% with the result of th
exact stability analysis but it is off by 20% for S2. In th
framework of the weakly nonlinear analysis the surface p
file is represented by Eq.~1! with uki u5kc and zn50 for n
even. The mode amplitudesAi are governed by the set of th
amplitude equations

t] tAi5eAi2(
j 51

N

G~u i j !uAj u2Ai , ~3!

wheret is the time constant of linear damping, also an o
come of the linear analysis.G(u) is the nonlinear coupling
function, whose dependence on the sample specifications
the drive frequency is analytically known. EvaluatingG at
the angle incrementsu i j between two interacting modesk i
and k j yields the set of cubic coupling coefficients, whic
governs the pattern selection process. By computing the
tionary solutions of Eq.~3! in the form uAi u5RN with i
51 . . .n and

uAi u5RN5A «

(
i 50

N21

G~ ip/N!

~4!

at different symmetry indicesN, one obtains the saturatio
amplitudeR1 for line patterns,R2 for squares, etc. As out
lined in Refs.@12,38# that pattern with the smallest free en
ergy

FN52
1

2
e2H (

l , j 51

N

G~u i j !uAl u2uAj u2J ~5!

is to be selected. Broadly speaking, in the capillary regi
investigated here, it is either squares~at low sample viscosi-
ties! or lines ~at higher viscosities!. Wave patterns with a
higher order rotational symmetry are not found since th
routinely possess a larger free energy. Since our optica
flection technique works best with a one-dimensional surf
modulation, we make use of the above mentioned geom
cal selection feature and perform all experiments in conta
ers of rectangular cross section. That way we enforce
patterns at any investigated sample viscosity and unde
operating conditions. Under the assumption that the sat
tion amplitude for lines is not appreciably influenced by t
container geometry we are able to compare our data with
line solution (N51) of Eq. ~5!

h~x,t !5A cos~kcx!sinS V

2
t D . ~6!

Here the saturation amplitude is given by

A5A«/G, ~7!

where we have abbreviatedA1 by A andG(0°) by G.
5-3
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IV. EXPERIMENTAL SETUP

The surface wave excitation is accomplished by a vib
tion exciter with a maximum force peak of 4670 N. Deta
are described elsewhere@17#. The acceleration signal is com
puter controlled, its amplitude and harmonicity are stabiliz
such that fluctuations are smaller than60.2%. We use a
container with a rectangular cross section~length 150 mm,
width 50 mm! in the form of a stadium~see Fig. 1!. This side
length ratio is sufficient to enforce Faraday patterns in
form of lines for all investigated sample fluids and under
operating conditions. To minimize disturbances originat
from meniscus waves, the form of the rim is designed a
‘‘soft beach,’’ where the depth increases up to its maxim
of 5 mm on a length of 9 mm giving an inclination angle
.34°. The curved sides of the stadium also help to supp
meniscus waves due to destructive interference. The ve
was covered by a glass plate to avoid pollution, evapora
and temperature fluctuations. The temperature of the c
tainer~typically T530 °C) is regulated with an accuracy o
60.1°. Two differentDow Corning 200silicone oils are
used as sample fluids. For a complete specification see T
I. The choice of the filling heighth53 mm is large enough
to guarantee that the finite depth correction to the disper
relation~2! can be ignored, i.e., tanh(kh).0.995 for all mea-
surements.

The knowledge of the wave numberk is crucial for the
interpretation of the elevation amplitude~see below!. There-
fore, before each run of amplitude measurements we ev
ate the wave numberk of the pattern by photographing th
free surface illuminated by a diffuse light source~see Fig. 1!.

FIG. 1. Photograph of the container and a surface pattern
lines. The screen for the optical deflection technique is disman
and the pattern is illuminated by a diffusive light source. Due to
rectangular geometry the lines are oriented perpendicular to
longitudinal container axis~transverse mode!. The deformations ap-
pearing at the arched ends die out after a few pattern wavelen
The accelerometer and some cabling are visible on the left sid
the container. The background of the picture is the shaker arma
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To record surface wave amplitudes we use a laser b
directed vertically onto the fluid surface~see Fig. 2!. The
cross section of the beam is widened to a diameter betw
0.75 and 1.25 of a pattern wavelength. The light beam
flected at the standing wave surface pattern hits a diffus
screen mounted above the liquid-air interface. The shap
the reflected light pattern depends on the surface wave s
ture. In the case of lines, a bright light streak with sha
edges occurs on the screen. Its length, oscillating with
frequency of the external drive, is recorded by a CCD ca
era and digitized. The largest length during an oscillat
cycle yields the maximum surface slope]h(x)/]xumax. Ac-
cording to the geometry shown in Fig. 2 one obtains

]h

]x U
max

5tan~b!5tanS 1

2
arctan

s

dD . ~8!

Deflection angles up tobmax540° have been exploited. Mi
nor effects due to the refraction of the light beam by the gl

of
d

e
he

hs.
of
re.

TABLE I. Fluid specifications at different temperatures for th
low ~high! viscosity sample S1~S2!

T V/2p r n s ac kc

Sample (°C) ~Hz! (kg/m3) ~cS! (1023 N/m) ~g! (m21)

S1 30 60 934 8.35 20.1 1.23 1060
80 1.91 1340

120 3.85 1815
160 6.2 2230

S2 30 80 955.4 94 20.55 15.1 1080
100 21.7 1230
140 37 1450

S2 35 80 950.9 85 20.2 14 1120
45 941.9 73 19.5 12.5 1180
50 937.5 67 19.15 11.7 1205

FIG. 2. Sketch of the amplitude measurement technique. A la
beam with a diameter comparable to the wavelength of the sur
pattern passes through a hole in the center of a diffusing screen
gets reflected at the oscillating fluid surface. In the case of a
pattern the laser spreads out to a light streak of length 2s on the
screen, which is recorded by a CCD camera. Since the light
defining the tips of the streak may originate from two neighbor
wave nodes the lengths is flawed by a systematic errorDs of one
wavelength 2p/k.
5-4
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FIG. 3. Sample S1: Stationary wave amplitudehumax as a function of the reduced acceleration«5a/ac21 taken at the drive frequencie
~a! V/2p560 Hz, ~b! 80 Hz, ~c! 120 Hz,~d! 160 Hz. The maximum elevationhumax is derived from the measured slope via the relati
humax5]h/]xumax/kc . Solid symbols: experimental data, solid line: result of the weakly nonlinear perturbation analysis of Ref.@12#, open
symbols: results of the full scale numerical simulation. The band between the dotted lines in~a! indicates the systematic error of th
measuring technique. Error bars indicate statistical fluctuations as obtained by a sequence of 25 individual measurements. At s« the
statistical fluctuation increase since the length of the light streak is small. At large« the error increases again because of a beginning de
dynamics, which destroys the stationarity and the coherence of the line pattern.
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cover are corrected for. As seen in Fig. 2 the light rays ma
ing the tips of the streak may originate from two neighbori
elevation nodes. This and other errors ins together with the
inaccuracies ink andd sum up to a relative systematic err
in ]h/]xumax which does not exceed 10% for dive amp
tudes«.0.5% @see Fig. 3~a!#. In case the surface profile a
the moment of maximum elevation is approximately sin
soidal with wave numberk the amplitudehumax can be de-
duced from Eq.~8! via

humax5
1

k

]h

]xU
max

. ~9!

The light pattern on the diffusive screen is recorded b
CCD camera situated vertically above it. The pictures
evaluated by home made processing software. To that
each image is binarized and the longest distance between
two points of the light streak is extracted. An automa
adaption of the binarization threshold is implemented
compensate for the decreasing light intensity of the str
during an amplitude ramp.

The measurement of the bifurcation diagram]h/]xumax(«)
runs as follows: Starting at a drive amplitude of«,0.2%,
the computer performs an automatic ramp in steps ofD«
50.065% up to the maximum«max. For sample S1 it is
«max520% but only«max52% for the more viscous prob
S2. The fluctuations of the drive acceleration vary fro
60.05% at low drive (a.1g) up to 60.2% at a.20g.
Between each increment the ramp is suspended for a wa
03630
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period of 1 min to allow for the system to equilibrate to th
new situation. Then a series of 25 snapshots of the li
streak is taken at regular intervals of 20 s. This yields
average streak length and the statistical error as indicate
the error bars in Fig. 4~b!. After each upwards amplitude
ramp a second scan in the opposite direction down to«5
22% is performed to check for a possible hysteresis in
bifurcation diagram.

V. NUMERICAL SIMULATIONS

In this paper we present extracts from our numeri
simulations of the full nonlinear hydrodynamic proble
adapted to treat two-dimensional Faraday patterns in
form of lines. A sketch of the implemented algorithm
given here; details will be presented elsewhere@39#.

The line patterns are considered two-dimensional in
x-z plane; they direction is ignored. The applied algorithm
based on a popular marker-and-cell method@40,41# exten-
sively used to simulate thermal convection in fluids@42#.
Therein the nondimensionalized incompressible evolut
equations read as

] tu52]xu
22]z~wu!1

V

2n k2
~]xxu1]zzw!2]xp,

~10!

] tw52]x~uw!2]zw
21

V

2n k2
~]xxu1]zzw!2]zp,

~11!
5-5
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]xu1]zw50, ~12!

with u and w being thex and z component of the velocity
respectively, andp being the pressure. To nondimensionali
we have used the following unities: wave numberk for
length,V/2 for time andrV2/(4k2) for pressure. The abov
set of equations is solved on a staggered grid foru, w, p. The
time integration is carried out by a forward time step, wh
the diffusive space derivatives and the pressure gradie
evaluated by central differences. The convective terms
treated by a donor-cell scheme. With a damped Jak
method the pressure is determined such that the incomp
ibility condition Eq. ~12! is met. Since we are not intereste
in surface profiles with breaking waves or droplet ejectio
h(x,t) is a single valued function. Its dynamics is dete
mined by the kinematic boundary condition

] th52uuz5h ]xh1wuz5h . ~13!

The dynamical boundary conditions

t•s8uz5h•n50, ~14!

puz5h2n•s8uz5h•n5
4 gk

V2
~11a sin~2t !!h

1
4sk3

rV2
~“•n!, ~15!

ensure the continuity of tangential stresses across the i
face and the discontinuity of normal stresses due to the fi
surface tension. Heres i j8 52(nk2/V)(¹ iuj¹ jui) denotes the
dimensionless viscous stress tensor,n(x,t) is the surface
normal vector in outward direction, andt(x,t) the tangential
vector perpendicular to it. Note that the tangential condit

FIG. 4. The coupling coefficient 1/G ~scaled bykc
2) obtained

from sample S1~S2!. The squares~circles! denote fitted values for
G as compiled from the data of Fig. 3~Fig. 6!. The solid~dashed!
line is the prediction of the perturbation theory@12#.
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is completely ignored in some previous free surface al
rithms @43#. Here the implementation of Eq.~14! is accom-
plished by approximating the discretized interface line
either horizontal, vertical or diagonal segments as sugge
by Grieb @44#. Besides the surface boundary conditions
impose a no-slip condition at the bottom. For the pres
simulations periodic boundary conditions in lateral directi
are used, even though our algorithm allows us to switch e
ily to a realistic no-slip situation. All simulations are pe
formed by a mesh composed of 80 cells per wavelen
2p/k at a time step size of 0.001.

We emphasize that the present integration method d
not suffer from the limitations of earlier algorithms~see Sec.
III B 1 !. In particular, since it is based on the full Navie
Stokes equations, there is no restriction to the weakly di
pative limit. Moreover, our algorithm allows us to study fi
nite filling levels, even if the depth of the viscous bounda
layer compares to the layer thicknessh.

VI. RESULTS

A. Measurements at low viscosity

By virtue of the rectangular container shape the prim
Faraday pattern consists of lines oriented parallel to
shorter sidewall. This is in contrast to control experime
carried out in large aspect ratio vessels, where squares
the selected planform under otherwise identical conditio
At the onset of the instability defining«50 the lines occur
first in local regions of the surface. By increasing the dri
up to «'0.5% the line pattern spreads out over the wh
surface. This nonideal onset is due to the spatial inhomo
neity of the drive. To rule out whether the finite longitudin
container dimension gives rise to a mode discretization
scanned the drive frequency betweenV/2p580 Hz and up
to 100 Hz in steps of 0.5 Hz. Thereby the number of wav
fitting into the container increased from 32 to 37 in a co
tinuous manner. By virtue of the ‘‘beachlike’’ container rim
no stepwise behavior of the curveskc(V) or ac(V) could be
detected. This is of crucial importance as a mode discret
tion often implies a detuning of the system and thus mi
cause a modified bifurcation behavior: Depending on
strength of the detuning the forward bifurcation, valid f
laterally infinite systems, could switch into a backward b
furcation. Moreover, the measured onset amplitude and w
number always agreed within 0.5% with the theoretical p
diction of the exact linear analysis computed for a latera
infinite fluid layer.

A set of amplitude measurements performed at four d
ferent drive frequencies is shown in Fig. 3. Only the da
obtained by up-ramping the drive are plotted since the c
responding down ramps did not deviate significantly. Th
was no indication for a hysteretic transition. The highe
drive amplitude achieved was«max.40% @Fig. 3~b!# where
the maximum surface elevation reaches about 0.5 mm,
already 16% of the layer thickness. However in most ru
the amplitude scan had to be stopped at«max.20% due to
incipient defect dynamics. Over the whole investigated dr
amplitude range, 0,«,20%(40%) no deviation of the non
5-6
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linear wave numberk(«) from its onset valuekc could be
detected.

The bifurcation diagramshumax(«) as shown in Fig. 3
demonstrate that a square-rootlike increase according to
theoretical predictionhumax5A«/G ~solid line in Fig. 3! is
limited to rather small drive amplitudes below«.2.5%. For
a closer quantification we used the experimental data a
,«,2.5% and fitted the coefficientG. Good agreemen
with the prediction of Zhang and Vina˜ls ~see squares an
solid line in Fig. 4! is observed. It is interesting and to ou
knowledge unmentioned yet that the analytical express
for G/kc

2 @12# becomesV independent at large drive freque
cies according to

G/k2→3.84122(2/3)
11

240
n22S s

r D 4/3

V2(2/3). ~16!

It can be seen from Fig. 4 that this asymptotic applies fa
well already at drive frequencies beyondV/2p560 Hz. As
a consequence of Eq.~16! the surface slope]h/]xumax
should be asymptotically independent of the drive frequen
This is tested by Fig. 5, where the surface slopes assoc
with different drive frequencies approximately collapse on
common master curve. This scaling persists even fo«
.2.5%, i.e., beyond the validity range of the perturbati
analysis.

Let us briefly discuss possible sources for discrepan
between pertubation analysis and experiment. As mentio
above, the appearance of line patterns aligned parallel to
shorter container side~transverse mode! is enforced by the
rectangular container geometry. The result of this finite
ometry effect may be twofold: linear and nonlinear. The l
ear one is negligible as can be seen from the following
gument: The container sidewalls provide a damping offse
both the longitudinal and the transverse line mode. Howe
since the distance between the longer sidewall pair
smaller, the threshold shift for the longitudinal mode is e
hanced. Indeed, we even find the threshold of the transv
mode almost unaffected: The empiric Faraday onsetac

FIG. 5. Sample S1: Bifurcation diagram for the maximum s
face slope]h/]xumax. Symbols and parameters as in Fig. 3. T
solid line is the asymptotics given by Eq.~16! for V→`.
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agrees within 0.5% with the prediction of the exact stabil
analysis computed for a laterally infinite container. Clear
this linear reasoning does not imply that the saturated n
linear pattern amplitude remains unchanged too. Howe
estimating the geometry effect upon the coefficientG is a
difficult task: To that end one had to redo the perturbat
analysis in terms of the container eigenmodes instead of
simpler plane waves.

A second cause for deviations to the experimental res
is the restriction of the perturbation analysis to a pure si
soidal time dependence as given by Eq.~6!. However, as
outlined in Sec. III B 2 the actual frequency spectrum of t
Faraday mode is not monochromatic. In the investigated
gion the error inac resulting from this approximation lies
between 10% and 20%.

For a quantitative comparison with the experimental d
at elevated drive amplitudes we refer to the numerical sim
lations as described in Sec. III B 1 and indicated in Fig. 3
the open symbols. Up to elevated drive amplitudes of«max
.20% we observe good agreement between simulation
experiment. The deviation is nowhere worse than 15%,
considerably better at the higher drive amplitudes, where
systematic error of the detection method is smallest@see
Figs. 3~c! and ~d!#. Beyond predicting the local elevatio
maximum the simulations also provide access to the spa
anharmonicity of the surface elevation. We find that the s
tial harmonics 2k, 3k . . . contribute to the Fourier spectrum
by less than 4%. This justifiesa posteriorithat we equate the
elevation amplitudehumax with the ratio ]h/]xumax/kc as
used to produce Fig. 3.

B. Measurements at high viscosity

Following the same procedure as in the previous sec
we performed a set of amplitude measurements on the m
viscous fluid sample S2~see Fig. 6! at a temperature o
30 °C. Again the selected pattern consists of parallel tra
verse lines. However, unlike S1, this is the preferred p
form in large aspect ratio containers too, being a result of

- FIG. 6. Sample S2 atT530 °C: Stationary wave slope
]h/]xumax at the drive frequenciesV/2p580 Hz ~squares!, 100
Hz ~circles!, 140 Hz~diamonds!.
5-7
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elevated viscosity of probe S2. Consequently, the rectang
container geometry just determines the orientation of
lines rather than altering the selected pattern.

Also in contrast to S1 the more viscous probe S2 exhi
a wave amplitude, which grows rapidly with the driving a
celeration~Fig. 6!. The maximum deflection angle ofbmax

.40° is reached at«,1%. Clearly, at those small drives a
bifurcation diagrams show fairly well a square-rootlike i
crease according to Eq.~4!. However, the coefficientG as
compiled from the data at 0,«,0.8% is an order of mag
nitude larger than for S1~circles in Fig. 4!. Moreover,G
deviates substantially from the prediction of the perturbat
analysis~dashed line in Fig. 4!. But the latter observation is
not surprising since both the low damping approximation
well as the infinite depth assumption are violated for S
Note that 1.3,g,1.7 and the depth of the viscous bounda
layer is 0.5 mm, i.e., 20% of the layer thickness. Althou
the perturbation analysis does not quantitatively apply h
we recover the sameV-independent scaling of the bifurca
tion diagram. The data for the slope]h/]xumax(«) collapse
again on a master curve~see Fig. 6! the same way as they di
for S1 in Fig. 5.

C. Viscosity dependent measurements

A final set of measurements is devoted to the visco
dependence of the surface elevation. Figure 7~a! shows a set
of bifurcation diagrams obtained with S2 at different visco
ties ~see Table I!. This is accomplished by varying the tem
perature of the probe. These measurements are perform
the drive frequencyV/2p580 Hz. In agreement with ou
previous observations the surface elevation steeply rise
the viscosity increases. Figure 7~b! shows the dependence o
the coefficientG on the viscosity as fitted from the exper
mental data. By comparison with the result of the wea
nonlinear analysis@solid line in Fig. 7~b!# we conclude that
the small damping approximationg!1 holds at best up to
viscosities ofn.50 cS.

VII. CONCLUSIONS

We have presented a series of systematic amplitude m
surements for stationary Faraday surface waves. The in
tigation is accomplished by a laser beam reflected at the
cillating surface. To facilitate the interpretation of the da
the measurements are applied to line patterns, which are
forced by the rectangular container geometry. Due to the
‘‘beachlike’’ boundary conditions a mode discretization
avoided. Bifurcation diagrams of the maximum surface
flection versus the drive amplitude are systematically
corded over a wide parameter range of drive frequency
sample viscosity.

The experimental data reveal that the perturbation an
sis of Zhang and Vina˜ls @12# applies quantitatively to fluids
with a viscosity of less than.50 cS and to very small drive
amplitudes of not more than 2.5%. Moreover, we obse
that the surface slope scales almost independently of
drive frequency. This finding is also supported by the a
lytical expression for the nonlinear coupling coefficientG as
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predicted by the perturbation theory. Qualitatively this sc
ing behavior persists even up to a drive amplitude of«max
.20%, i.e., at operating conditions where the perturbat
theory is no longer applicable.

For a quantitative comparison of our data at eleva
drive amplitudes we provide a numerical simulation of F
aday waves on the basis of the full Navier-Stokes equat
This new algorithm does not suffer from the standard rest
tions of the low dissipation limit and large filling thickness
as used by other previous simulations. Good quantita
agreement with the empiric data is found up to the high
investigated drive amplitudes of«max.20%.
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FIG. 7. Sample S2 at different temperatures:~a! Bifurcation
diagram]h/]xumax at the drive frequencyV/2p580 Hz. The vis-
cosities aren594 cS~squares!, 85 cS~circles!, 73 cS~diamonds!,
63 cS~down triangles!, 8.35 cS~stars, sample S1!. ~b! The coupling
coefficient 1/G ~scaled bykc

2) as a function of the viscosityn. The
symbols show the coefficient estimated by fitting the data of~a! for
«,1%. The prediction of the perturbation analysis~solid line! be-
comes unreliable for viscosities aboven.50 cS.
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