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Amplitude measurements of Faraday waves
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A light reflection technique is used to measure quantitatively the surface elevation of Faraday waves. The
performed measurements cover a wide parameter range of driving frequencies and sample viscosities. In the
capillary wave regime the bifurcation diagrams exhibit a frequency independent scaling proportional to the
wavelength. We also provide numerical simulations of the full Navier-Stokes equations, which are in quanti-
tative agreement up to supercritical drive amplitudess6f20%. The validity of an existing perturbation
analysis is found to be limited t9<<2.5%.
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[. INTRODUCTION taken yet. Such data are indispensable for a verification of
any nonlinear theory. It is the aim of the present work to
A sound understanding of hydrodynamic pattern formingprovide extensive experimental material in order to fill this
systems is based on a balanced interplay between experimeg@p. A measurement technique is presented appropriate to
and theory, both analytical and numerical. During the pasfluantify the surface elevation of Faraday ripples. Our mea-
this concept has led to considerable progress, especially §Hrements cover a broad part of the parameter space explored
case of Rayleigh-Beard convection(RBC) or Taylor- In recent experiments on pattern selection in the Faraday
Couette f|ow(TCF)' where an amazing level of quantitative expe“ment. In the case of low V|SCOS|ty fluids our f|nd|ngs
agreement has been achieved. Another famous example 8f¢ expected to compare with the perturbation analysis of
pattern forming systems is the Faraday experiment: Surfacéhang and Vint [12]—at least at a weak supercritical drive.
waves on a free liquid-air or liquid-liquid interface are ex- Furthermore, a closer comparison yields a reliable estimate
cited by a sinusoidal vibration of the fluid layer in vertical Of the validity range of this approximation. Farther away
direction. This system has the advantage of fairly short timdrom the threshold of the instability, quantitative theoretical
scales in combination with a very rich bifurcation behavior. Predictions are not available yet. Here we provide a numeri-
During the last 2 decades the focus in this field was on noncal simulation by means of a finite difference scheme. This
linear pattern selectiofL—5], secondary instabilitieks], the computation allows for two-dimensional solutions of the full
transition towards chadg], droplet ejectior{8] and Stokes Navier-Stokes equations. They are used for a comparison
drift [9]. However, due to the parametric drive mechanismWith our measurements on line patterns.
the mathematical description of the Faraday experiment is
more complicated as compared to RBC or TCF and the Il. SYSTEM
guantitative understanding is less advanced yet. For instance,
it was not until recently that a rigorous linear stability theory ~ We consider a fluid layer of thicknesswith a free sur-
had been developed, valid for viscous fluids and realistidace vibrated in vertical direction at a drive frequeriey In
boundary condition$10]. Nowadays the predictions of the the frame of reference comoving with the container the lig-
linear theory and the experimental results agree within a fewiid is subject to a modulated gravity acceleratign
percenf11]. On the nonlinear level, however, the agreement+asin(t), whereg is the gravitational acceleration ard
between theory and experiment can at best be considerdde amplitude of the drive. The fluid, considered as being
qualitative: In the framework of a weakly nonlinear pertur- incompressible, is characterized by the kinematic viscasity
bation analysis different primary surface wave patterns wittthe densityp, and the surface tensian. The hydrodynamic
quadratic, hexagonal, etc., symmetry have been predictggroblem is governed by the Navier-Stokes equation, in which
[12]. Even though most of them have been found in experithe modulated gravity enters as a parametric drive. The
ments[4,5], the empiric and predicted phase diagrams reveaboundary conditions are free slip at the fluid-air interface and
only a qualitatitve coincidence. Moreover, other experiments10 slip along the walls and the bottom of the container If
operate with a two-frequency drive sigiaB, 14, or at very  exceeds a critical threshok.(Q2,h,v,p,o) the surface, be-
shallow filling heightg15] or with complex fluidg§16—18.  ing plane at the beginning, undergoes the Faraday instability
The resulting pattern dynamics become more complex andnd standing waves with a wave numlkeappear. Usually
exotic structures like superlatticd44,15,17 or oscillons these waves organize themselves in the form of regular pat-
[18] appear. In some cases a qualitative understanding baséslns of different possible symmetriéines, squares, hexa-
on symmetry arguments could be obtairjéd,19. gons ...). In containers with a large lateral aspect rdtlme
With regard to this situation it comes as a surprise that aatio between container dimension to wavelength of the pat-
systematic quantitative investigation of the system’s majotern) the pattern selection is geometry independent and
order parameter, the surface elevation, has not been undeselely governed by the nonlinearities in the equations of mo-
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tion. In contrast, by changing the lateral container extensiophy [3,4,27. A beam of parallel light with a diameter com-
one can manipulate the selection process. For instance, Iparable to the container size passes through the fluid layer.
reducing one sidelength of a beforehand quadratic containeThe deformed standing wave surface pattern with its heaps
a line pattern(oriented parallel to the shorter sjdean even-  and hollows acting like an array of collecting and diffusing
tually be enforced in a situation where squares would prevailenses is mapped onto a screen. However, this technique is
otherwise. In the present paper extensive use will be made g&stricted to very small surface deformations for which the
this geometrical selection feature. profile can be recovered by ray tracing. Otherwise caustics
Generically, the time dependence of the Faraday modgccur, which make this simple and effective method break
bifurcating out of the undisturbed plane surface is subhargown.
monic, i.e., the surface oscillates at half the drive frequency An alternative technique introduced by Wright, Budakin
w={/2. The standing wave surface profiigr) at onset of and Puttermaf28] is based on intensity losses due to diffu-

the instability can be written in the form sive scattering. These authors use Polystyrene colloids to
LN o provide light scatterers within the fluid. The transversing
_ - ki in(Q/2)t light intensity, weakly modulated by the local layer thick-

(.0 2 .21 (Ae +C'C')n:2m tn® - @ ness, is recorded by a high-sensitivity charge coupled device

(CCD) camera to reconstruct the surface profile. As an ex-
Here r=(x,y) abbreviates the horizontal coordinates. Theample, a snapshot is presented taken at a rather strong drive
set of Fourier coefficient§{,} determines the subharmonic amplitude within the turbulent regime.
time dependence. Exactly at the onset of the instabitity, To our knowledge, previous quantitative investigations on
=a., one has{,=0 for evenn, while the odd coefficients near-onset Faraday waves are restricted to the low-frequency
are the components of the eigenvector related to the lineaegime, i.e., belon)=30 Hz. Douady[29] presents an in-
stability problem. The spatial modes are characterized by theestigation where the deflection of a thin laser beam directed
wave vectork;, each carrying an individual amplituds . onto a wave node is recorded. To prevent the nodes from a
These quantities are determined by the nonlinearities of thgradual drift, Douady uses the “rimfull technique” to fix the
problem and—if appropriate—also by the container geomyposition of the pattern relative to the container boundaries.
etry. In principle thek; can have any length and orientation That way the structure experiences a mode discretization dic-
but usually they are supposed to be equally spaced on thtated by the container geometry. Data for the elevation
circle |kj|=k. Then the numbeN of participating modes maxima and the linear relaxation timeare provided for a
determines the degree of rotational symmetry of the patterrsilicone oil at a viscosity of 10 ¢S and drive frequencies
N=1 corresponds to line®y=2 to squaresN=3 to hexa- between 20 and 30 Hz.
gons or triangles, etc. Patterns with™>3 are no longer Several other authors report amplitude measurements in
translational symmetric, we refer to them as quasiperiodic. small aspect ratio experiments at driving frequencies be-

tween 5 and 10 HE30-32. In this situation a considerable

Il. PREWORK BY OTHER AUTHORS mismatch between frequency and wavelength may occur.
) The resulting detuning renders the primary bifurcation hys-
A. Experiment teretic. An additional problem in these experiments is the

There exist a considerable number of measuring techmoving contact line between the fluid and the container. It
niques appropriate to investigate the surface wave dynamicg)ay also generate a hysteresis or even induce an irregular
They range from contacting permittivity measuremdi2@  time dependent wave dynamics.
over optical systemg21] including interferometry, radar
back scattering22] up to x-ray absorption techniquga3]. B. Theoretical
Most of these procedures apply to gravity waves, i.e., long
wavelength surface waves. Each of them has its own limita-
tions. Either the amplitude is recorded locally in space, or the A couple of numerical simulations on Faraday waves is
detector is too slow to resolve the temporal spectrum. One ofrorth mentioning in the present context. Zhang and Yéna
the strongest restrictions for optical reflection technique$33] reduce the original full three-dimensional hydrodynamic
comes from the poor reflectivity of most fluid-air interfaces. problem to a set of two-dimensional nonlocal equations for-
Only a few percent of the incident light is reflected and anmulated in terms of the lateral coordinates only. This is the
even smaller contribution is due to diffusive backscatteringoutcome of the so called “quasipotential approximation,”
Since the latter is crucial for standard visualization tech-which considers the bulk flow as being potentiaviscid).
niques such as holographic photography or triangulatiorVortical flow contributions in the viscous boundary layer
[24], these methods often do not work properly. One mightoeneath the surface are accounted for by an effective bound-
think of spraying the fluid surface with tracer particles like ary condition. Clearly this analysis is only valid for deep
club moss seeds but this in turn affects the surface tension dayers h—«) and restricted to the low dissipation limit
the surface viscosity in an uncontrollable manner. In a pair obk?/ 2<1. The derived equations for the surface elevation
very recent publicationg25,2€] the authors propose sophis- %(r,t) are numerically integrated by a pseudo-spectral algo-
ticated methods based on a colored illumination or on amithm. The principal concern of these simulations is to obtain
array of microlenses. A standard visualization techniquehe most preferred pattern and to investigate its resistance
used in several Faraday experiments is the light shadowgragainst secondary instabilities. Stationary patterns with dif-

1. Numerical
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ferent rotational symmetries have been observed. In particiated by Eq(2) for S1 agrees within 1% with the result of the
lar, drive frequencies at the transition between gravity andexact stability analysis but it is off by 20% for S2. In the
capillary waves()/27=30 Hz, give rise to the most inter- framework of the weakly nonlinear analysis the surface pro-
esting structures: quasiperiodic pattern with a tenfold rotafile is represented by Eq1) with |k|=k. and{,=0 for n
tional symmetry[4]. In the capillary regime squares or lines even. The mode amplitudés are governed by the set of the
are observed depending on the viscosity of the sample fluicamplitude equations

A somewhat different numerical procedure has been used
by Schultzet al. [34] and Wright, Yon, and Pozrikidig35]. N
Both investigations are based on the Euler equations for in- 7oA = €A~ D, L (6;))|AI’A;, (3
viscid fluids. Dissipation is accounted for by a phenomeno- =1
logical linear damping term introduced afterward. The nu-
merical procedures used are, respectively, a boundaryherer is the time constant of linear damping, also an out-
integral method and a vortex-sheet technique. That way theome of the linear analysig:( ) is the nonlinear coupling
profile of very steep two-dimensional Faraday waves is infunction, whose dependence on the sample specifications and
vestigated. Their findings comprise dimpled crests, the forthe drive frequency is analytically known. Evaluatihigat
mation of a plumelike shape, or the beginning of dropletthe angle increments;; between two interacting modés
ejection. andk; yields the set of cubic coupling coefficients, which

Obviously, all of the aforementioned numerical work is governs the pattern selection process. By computing the sta-
restricted to the low dissipation limit and to large layer thick- tionary solutions of Eq(3) in the form |A;|=Ry with i
nesses. Indeed, we are not aware of systematic numericall ...n and
simulations for viscous fluids on the basis of the full hydro-
dynamic equations and boundary conditions.

&
N (4)
> T(iwIN)

The first step toward a theoretical understanding of pat- i=0
tern forming systems is a linear stability analysis. This gives
access to the threshold amplitugg, the critical wave num-  at different symmetry indicesl, one obtains the saturation
berk., and the most unstable mode. For mathematical conamplitudeR, for line patterns;R, for squares, etc. As out-
venience it is popular to assume laterally infinite geometrieslined in Refs.[12,3§ that pattern with the smallest free en-
Although it is known for a long time that the stability prob- €rgy
lem for Faraday waves can be approximately mapped to a
parametrically driven pendulumi36], a rigorous stability 1 N
analysis for viscous fluids dates back until recerjtly]. J-"N=—562 > T(o)|A A2 5
Quantities evaluated by this method will be referred to in the hi=1
following as “results of the exact stability analysis.”

A nonlinear analysis suitable to predict the selected suris to be selected. Broadly speaking, in the capillary regime
face pattern just above the primary instability has been prelnvestigated here, it is either squar@s low sample viscosi-
sented by Zhang and Vits[12]. They start form their re- ties) or lines (at higher viscositigs Wave patterns with a
duced two-dimensional set of quasipotential equatieez higher order rotational symmetry are not found since they
Sec. IlB 1) and perform a perturbation analysis for small routinely possess a larger free energy. Since our optical re-
supercritical drives =(a—a.)/a,<1. The analysis can be flection technique works best with a one-dimensional surface
understood as a double expansioriand in the dimension- Modulation, we make use of the above mentioned geometri-
less damping parameter=rk?/Q)<1. Sinceh— is as- cal selection feature and perform all experiments in contain-
sumed, vortical flow contributions coming from the viscous®rs Of rectangular cross section. That way we enforce line
boundary layer along the bottom of the container are igPatterns at any investigated sample viscosity and under all
nored. The pattern wavelengthr2k is approximated by the ©Perating conditions. Under the assumption that the satura-

|Ail=Ryn=
2. Analytical

inviscid dispersion relation tion amplitude for lines is not appreciably influenced by the
container geometry we are able to compare our data with the
Q)2 o line solution N=1) of Eq. (5
(— =gk+ —k5. (2 N=1) a6
2 p
[Q
Later on the work by Zhang and Vilsshas been extended by n(x,t)=A cog ch)Sln(it) : (6)

Chen and Vinks [37] for values of the damping parameter
y>1. However, since their calculated amplitudes cannot be|>_| re th turation amolitude is aiven b
given in a closed analytical form, we were unable to compare ere e saturation amplitude 1s given by
our results with their predictions.

In our experiments the damping parameter is<Oyl A= \elT, (7)
< 0.2 for the low viscosity sample S1 and lies between 1.3
and 1.7 for probe S2. Accordingly, the wave numbkeralu-  where we have abbreviated, by A andI'(0°) by I'.
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TABLE |. Fluid specifications at different temperatures for the
low (high) viscosity sample S1S2)

T Q27 p v o a. ke
Sample (°C) (Hz) (kg/m®) (¢S (102 N/m) (gy (m™Y)
S1 30 60 934 8.35 20.1 1.23 1060
80 1.91 1340
120 3.85 1815
160 6.2 2230
S2 30 80 9554 94 20.55 15.1 1080
100 21.7 1230
140 37 1450
S2 35 80 950.9 85 20.2 14 1120
45 9419 73 19.5 125 1180
50 9375 67 19.15 11.7 1205

To record surface wave amplitudes we use a laser beam
FIG. 1. Photograph of the container and a surface pattern oflirected vertically onto the fluid surfadsee Fig. 2 The

lines. The screen for the optical deflection technique is dismantledross section of the beam is widened to a diameter between
and the pattern is illuminated by a diffusive light source. Due to theQ.75 and 1.25 of a pattern wavelength. The light beam re-
rectangular geometry the lines are oriented perpendicular to thffected at the standing wave surface pattern hits a diffusive
longitudinal container axiéiransverse modeThe deformations ap- screen mounted above the liquid-air interface. The shape of
pearing at the arched ends die out after a few pattern wavelengthfhe reflected light pattern depends on the surface wave struc-

The accelerometer and some cabling are visible on the left side q{;re  |In the case of lines, a bright light streak with sharp
the container. The background of the picture is the shaker armatur%,dges occurs on the screen. Its length, oscillating with the
frequency of the external drive, is recorded by a CCD cam-

IV. EXPERIMENTAL SETUP era and digitized. The largest length during an oscillation

The surface wave excitation is accomplished by a vibraCYcle yields the maximum surface slopg(x)/dx|may. Ac-

tion exciter with a maximum force peak of 4670 N. Details cording to the geometry shown in Fig. 2 one obtains
are described elsewhdr&7]. The acceleration signal is com- P
puter controlled, its amplitude and harmonicity are stabilized an
such that fluctuations are smaller thar0.2%. We use a X
container with a rectangular cross sectigength 150 mm,
width 50 mm) in the form of a stadiunisee Fig. 1 This side  Deflection angles up t@,,,,=40° have been exploited. Mi-
length ratio is sufficient to enforce Faraday patterns in thenor effects due to the refraction of the light beam by the glass
form of lines for all investigated sample fluids and under all
operating conditions. To minimize disturbances originating
from meniscus waves, the form of the rim is designed as a
“soft beach,” where the depth increases up to its maximum
of 5 mm on a length of 9 mm giving an inclination angle of T
=34°. The curved sides of the stadium also help to suppress
meniscus waves due to destructive interference. The vessel
was covered by a glass plate to avoid pollution, evaporation 4
and temperature fluctuations. The temperature of the con-
tainer (typically T=30 °C) is regulated with an accuracy of
+0.1°. Two differentDow Corning 200silicone oils are
used as sample fluids. For a complete specification see Table =~
I. The choice of the filling heighbh=3 mm is large enough
to guarantee that the finite depth correction to the dispersiop,
relation(2) can be ignored, i.e., tarki)>0.995 for all mea- pattern passes through a hole in the center of a diffusing screen and
surements. _ _ gets reflected at the oscillating fluid surface. In the case of a line
The knowledge of the wave numbkris crucial for the  pattern the laser spreads out to a light streak of lengtbr2the
interpretation of the elevation amplitudgee below. There-  screen, which is recorded by a CCD camera. Since the light ray
fore, before each run of amplitude measurements we evalutefining the tips of the streak may originate from two neighboring
ate the wave numbek of the pattern by photographing the wave nodes the lengthis flawed by a systematic errdrs of one
free surface illuminated by a diffuse light soursee Fig. L.~ wavelength 2r/k.

. (8

_ _ 1 S
=tan(B)=ta Earctana

max

laser

liquid surface

FIG. 2. Sketch of the amplitude measurement technique. A laser
am with a diameter comparable to the wavelength of the surface
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FIG. 3. Sample S1: Stationary wave amplituglg,.. as a function of the reduced acceleratioaa/a,— 1 taken at the drive frequencies
(@ Q/2wr=60 Hz,(b) 80 Hz,(c) 120 Hz,(d) 160 Hz. The maximum elevation| .« is derived from the measured slope via the relation
7| max= 91X max/K: - Solid symbols: experimental data, solid line: result of the weakly nonlinear perturbation analysis 6f Befipen
symbols: results of the full scale numerical simulation. The band between the dotted lit@sindicates the systematic error of the
measuring technique. Error bars indicate statistical fluctuations as obtained by a sequence of 25 individual measurements. tAesmall
statistical fluctuation increase since the length of the light streak is small. Atdatiye error increases again because of a beginning defect
dynamics, which destroys the stationarity and the coherence of the line pattern.

cover are corrected for. As seen in Fig. 2 the light rays markperiod of 1 min to allow for the system to equilibrate to the
ing the tips of the streak may originate from two neighboringnew situation. Then a series of 25 snapshots of the light
elevation nodes. This and other errorssitogether with the streak is taken at regular intervals of 20 s. This yields the
inaccuracies irk andd sum up to a relative systematic error average streak length and the statistical error as indicated by
in 97/ IX| max Which does not exceed 10% for dive ampli- the error bars in Fig. @). After each upwards amplitude
tudese>0.5% [see Fig. 8)]. In case the surface profile at ramp a second scan in the opposite direction dowa o

the moment of maximum elevation is approximately sinu-—2% is performed to check for a possible hysteresis in the
soidal with wave numbek the amplitude|,.x can be de- bifurcation diagram.

duced from Eq(8) via
V. NUMERICAL SIMULATIONS

| :1‘9_77 9 In this paper we present extracts from our numerical
Mmax= "5y e simulations of the full nonlinear hydrodynamic problem
adapted to treat two-dimensional Faraday patterns in the

The light pattern on the diffusive screen is recorded by Jorm of lines. A sketch of the implemented algorithm is

CCD camera situated vertically above it. The pictures ard!Ven he_re; details will be presented elsevv_r[ee]._ .
evaluated by home made processing software. To that end The I|r?e patt_erns. are gon5|dered two-dmensmngl n .the
each image is binarized and the longest distance between agg plane; they direction is ignored. The applied algorithm is
two points of the light streak is extracted. An automatic™’ sed on a popglar marker-and-cell met.médid'ﬂ exten-
adaption of the binarization threshold is implemented toswely_used to S'”?“'ate_therma' convection in Auide2]. .
compensate for the decreasing light intensity of the streaQ’here_m the nondimensionalized incompressible evolution
during an amplitude ramp. equations read as

The measurement of the bifurcation diagram 9x| ma{€) Q
runs as follows: Starting at a drive amplitude ©£0.2%, FU=— A% — ,(WU) + ——— ( Iy U+ I W) — Iy,
the computer performs an automatic ramp in steps\ef 2vk?
=0.065% up to the maximung ... For sample S1 it is (10
Emax=20% but onlyeno,=2% for the more viscous probe Q
EZ. The quctuauons of the drive acceleration vary from FW=— 3 (UW) — G WP+ ——— (9, U+ 3, ) — O,
+0.05% at low drive §=1g) up to =0.2% ata=20g. k?
Between each increment the ramp is suspended for a waiting (17
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T T T T T T is completely ignored in some previous free surface algo-
8 L i rithms [43]. Here the implementation of E¢l4) is accom-
plished by approximating the discretized interface line by
P ° either horizontal, vertical or diagonal segments as suggested
by Grieb[44]. Besides the surface boundary conditions we
impose a no-slip condition at the bottom. For the present
simulations periodic boundary conditions in lateral direction
~° are used, even though our algorithm allows us to switch eas-
sk J ily to a realistic no-slip situation. All simulations are per-
----------------------------------------------- formed by a mesh composed of 80 cells per wavelength
I e 2m/K at a time step size of 0.001.
We emphasize that the present integration method does
L L L L not suffer from the limitations of earlier algorithnisee Sec.
® & L. 1o 12 140 10 Il B 1). In particular, since it is based on the full Navier-
driving frequency (¥2r (Hz) Stokes equations, there is no restriction to the weakly dissi-
pative limit. Moreover, our algorithm allows us to study fi-
nite filling levels, even if the depth of the viscous boundary
layer compares to the layer thickndss

T
A\
A\

2\
AT

FIG. 4. The coupling coefficient I/ (scaled bykg) obtained
from sample S1S2). The squarescircles denote fitted values for
I" as compiled from the data of Fig. (&ig. 6). The solid(dasheg
line is the prediction of the perturbation thed?2].

VI. RESULTS
du+ad,w=0, (12 A. Measurements at low viscosity
with u andw being thex and z component of the velocity, By virtue of the rectangular container shape the primary

respectively, ang being the pressure. To nondimensionalizearaday pattern consists of lines oriented parallel to the
we have used the following unities: wave numberfor shor_ter 5|de_vvall. This is in contrast to control experiments
length, /2 for time andpQ2/(4k?) for pressure. The above carried out in large aspect ratio ves_sels_, Wh_ere squares are
set of equations is solved on a staggered gridifav, p. The the selected planform under otherwise identical conditions.

time integration is carried out by a forward time step, whileAt the onset of the instability defining=0 the lines occur
the diffusive space derivatives and the pressure gradient {§St in local regions of the surface. By increasing the drive
evaluated by central differences. The convective terms arblP 0 €~0.5% the line pattern spreads out over the whole
treated by a donor-cell scheme. With a damped Jakob?“_rface' This _nonldeal onset is due to the 'spatlal m_hon_woge—
method the pressure is determined such that the incompreds€ity of the drive. To rule out whether the finite longitudinal
ibility condition Eq.(12) is met. Since we are not interested cOntainer dimension gives rise to a mode discretization we
in surface profiles with breaking waves or droplet ejection,Sc@nned the drive frequency betwe@/2r=80 Hz and up
n(x,t) is a single valued function. Its dynamics is deter- t0 100 Hz in steps of 0.5 Hz. Thereby the number of waves

mined by the kinematic boundary condition fitting into the container increased from 32 to 37 in a con-
tinuous manner. By virtue of the “beachlike” container rim
no stepwise behavior of the curvieg () or a,({2) could be

=~ Ulgmy Gyt Wy (13 getected. This is of crucial importance as a mode discretiza-

tion often implies a detuning of the system and thus might

The dynamical boundary conditions cause a modified bifurcation behavior: Depending on the
strength of the detuning the forward bifurcation, valid for
t'0'|z:n’”:0' (14) laterally infinite systems, could switch into a backward bi-

furcation. Moreover, the measured onset amplitude and wave
number always agreed within 0.5% with the theoretical pre-
diction of the exact linear analysis computed for a laterally
infinite fluid layer.

A set of amplitude measurements performed at four dif-
4ok3 ferent drive frequencies is shown in Fig. 3. Only the data

> (V-n), (15) obtained by up-ramping the drive are plotted since the cor-
Q responding down ramps did not deviate significantly. There

was no indication for a hysteretic transition. The highest

ensure the continuity of tangential stresses across the intetirive amplitude achieved was;,,,=40% [Fig. 3(b)] where
face and the discontinuity of normal stresses due to the finitthe maximum surface elevation reaches about 0.5 mm, i.e.,
surface tension. Herei’j =2(vk2/Q)(ViujVjui) denotes the already 16% of the layer thickness. However in most runs
dimensionless viscous stress tensofx,t) is the surface the amplitude scan had to be stoppecgt,~=20% due to
normal vector in outward direction, ar¢i,t) the tangential incipient defect dynamics. Over the whole investigated drive
vector perpendicular to it. Note that the tangential conditionamplitude range, € & <20% (40%) no deviation of the non-

, 4 gk :
p|Z= N0 |Z=77'n:?(1+a8|n(2t))77

+
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FIG. 5. Sample S1: Bifurcation diagram for the maximum sur- g5 6. Sample S2 afT=30°C: Stationary wave slope

face slopedn/dX|max- Symbols and parameters as in Fig. 3. Theﬂﬂ/ﬁx|max at the drive frequencie€/2m=80 Hz (squares 100
solid line is the asymptotics given by E.6) for () —oo. Hz (circles, 140 Hz (diamonds.

linear wave numbek(e) from its onset valuek. could be  4qrees within 0.5% with the prediction of the exact stability
detected. . . . analysis computed for a laterally infinite container. Clearly,
The bifurcation diagramsy|ma(e) as shown in Fig. 3  thjs |inear reasoning does not imply that the saturated non-
demonstrate that a square-rootlike increase according to thgear pattern amplitude remains unchanged too. However,
theoretical prediction|ma,= \/S/_F (solid line in Fig. 3 is  estimating the geometry effect upon the coefficiénts a
limited to rather small drive amplitudes belaw=2.5%. For ijfficult task: To that end one had to redo the perturbation
a closer quantification we used the experimental data at @nalysis in terms of the container eigenmodes instead of the
<e<2.5% and fitted the coefficierf. Good agreement simpler plane waves.
with the prediction of Zhang and Vits(see squares and A second cause for deviations to the experimental results
solid line in Fig. 4 is observed. It is interesting and to our s the restriction of the perturbation analysis to a pure sinu-
knowledge unmentioned yet that the analytical expressioRpidal time dependence as given by E6). However, as
for I'/kZ [12] becomed) independent at large drive frequen- outlined in Sec. Il B 2 the actual frequency spectrum of the
cies according to Faraday mode is not monochromatic. In the investigated re-
1 a3 gion the error ina. resulting from this approximation lies
F/k2—>384+ 2—(2/3)_1}—2(2) Q_(2/3)_ (16) between 10% .an(_j 20%. . . .
240 P For a quantitative comparison with the experimental data
) ) ) ) _at elevated drive amplitudes we refer to the numerical simu-
It can be seen from Fig. 4 that this asymptotic applies fairlyjations as described in Sec. Il B 1 and indicated in Fig. 3 by
well already at drive frequencies beyofld27=60 Hz. As  the open symbols. Up to elevated drive amplitudes of,
a consequence of E(16) the surface slop&n/dX|max  =20% we observe good agreement between simulation and
should be asymptotically independent of the drive frequencyeyperiment. The deviation is nowhere worse than 15%, but
This is tested by Fig. 5, where the surface slopes associatg@nsiderably better at the higher drive amplitudes, where the
with different drive frequenqes approxmate!y collapse on asystematic error of the detection method is smallsste
common master curve. Thl§ _scallng persists even sfo.r Figs. 3c) and (d)]. Beyond predicting the local elevation
>2.5%, i.e., beyond the validity range of the perturbationmaximum the simulations also provide access to the spatial
analysis. anharmonicity of the surface elevation. We find that the spa-
Let us briefly discuss possible sources for discrepanciega| harmonics &, 3k . .. contribute to the Fourier spectrum
between pertubation analysis and experiment. As mentioneég, less than 4%. This justifiesposteriorithat we equate the

above, the appearance of line patterns aligned parallel to th§eyation amplituder| a With the ratio d7/9X|max/ke as
shorter container sid@ransverse modes enforced by the | 5eqd to produce Fig. 3.

rectangular container geometry. The result of this finite ge-
ometry effect may be twofold: linear and nonlinear. The lin-
ear one is negligible as can be seen from the following ar-
gument: The container sidewalls provide a damping offset to Following the same procedure as in the previous section
both the longitudinal and the transverse line mode. Howevenyve performed a set of amplitude measurements on the more
since the distance between the longer sidewall pair iwiscous fluid sample S2see Fig. 6 at a temperature of
smaller, the threshold shift for the longitudinal mode is en-30 °C. Again the selected pattern consists of parallel trans-
hanced. Indeed, we even find the threshold of the transveraerse lines. However, unlike S1, this is the preferred plan
mode almost unaffected: The empiric Faraday orsgt form in large aspect ratio containers too, being a result of the

B. Measurements at high viscosity
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elevated viscosity of probe S2. Consequently, the rectangule 02 — . . . .
container geometry just determines the orientation of the g a) 4
lines rather than altering the selected pattern. ol 1] ]

Also in contrast to S1 the more viscous probe S2 exhibits ™ [ ot .

. . . . .. it ] P
a wave amplitude, which grows rapidly with the driving ac- 06 ** §§.§ L 2 e
ceIeraFion(Fig. 6). The maximum deflection angle gﬁ‘max 05| # o* * §§0’ LY L AAL N
=40° is reached a¢<1%. Clearly, at those small drives all g 0al e & W 1
bifurcation diagrams show fairly well a square-rootlike in- £ [ . ; __ oY
; - ® *8? _wvY

crease according to E@4). However, the coefficienf as & 03} LR B
compiled from the data at0¢<0.8% is an order of mag- 02l i.? +* iii g xESE KEX Xx K #EJ
nitude larger than for SZIcircles in Fig. 4. Moreover,I’ o1 Qi%i g % 1
deviates substantially from the prediction of the perturbatior a i i
analysis(dashed line in Fig. ¥ But the latter observation is 00 : L L L =

0.000 0.005 0.010 0.015

not surprising since both the low damping approximation as )
reduced acceleration £

well as the infinite depth assumption are violated for S2:
Note that 1.3<y<<1.7 and the depth of the viscous boundary
layer is 0.5 mm, i.e., 20% of the layer thickness. Although
the perturbation analysis does not quantitatively apply here b)
we recover the sam@-independent scaling of the bifurca-
tion diagram. The data for the slogey/dx|mae) collapse

again on a master curysee Fig. 6the same way as they did 40 |- .
for S1 in Fig. 5.

C. Viscosity dependent measurements

A final set of measurements is devoted to the viscosity -
dependence of the surface elevation. Figua® Zhows a set -
of bifurcation diagrams obtained with S2 at different viscosi- I
ties (see Table)l This is accomplished by varying the tem-
perature of the probe. These measurements are performed . , .
the drive frequency)/27=80 Hz. In agreement with our ) 10 ' 60 70 80 20 100
previous observations the surface elevation steeply rises ¢ viscosity (cS)
the viscosity increases. Figuréby shows the dependence of
the coefficientl’ on the viscosity as fitted from the experi-  FIG. 7. Sample S2 at different temperaturéa). Bifurcation
mental data. By comparison with the result of the weaklydiagramd/dx|ma at the drive frequenc§2/2m=80 Hz. The vis-
nonlinear analysisolid line in Fig. 1b)] we conclude that —cosities arev=94 cS(square} 85 cS(circles, 73 cS(diamonds,
the small damp|ng approx|mat|oﬂ<l holds at best up to 63 CS(dOWﬂ triangle% 8.35 CS(StarS, Sample Sl(b) The COUpIing
viscosities ofv=50 cS. coefficient 1I' (scaled byk?) as a function of the viscosity. The
symbols show the coefficient estimated by fitting the datéapfor
£<1%. The prediction of the perturbation analy&@slid line) be-
comes unreliable for viscosities above-50 cS.

We have presented a series of systematic amplitude mea-
;u;?irgr??;safcocrosrrt]atlliz ?1‘23/ bFa;ag?érsgg:r%er\gf?gcet: dT;]{eth'gvs redicted by the perturbation theory. Qualitatively this scal-
gali P oY . . ing behavior persists even up to a drive amplitudes gf,,
cillating surface. To facilitate the interpretation of the data : ) . .
: . . =20%, i.e., at operating conditions where the perturbation
the measurements are applied to line patterns, which are ep- . ;
. eory is no longer applicable.
forced by the rectangular container geometry. Due to the so 2 .
. J i . T For a quantitative comparison of our data at elevated
beachlike” boundary conditions a mode discretization is . . : . . .
. . . . . drive amplitudes we provide a numerical simulation of Far-
avoided. Bifurcation diagrams of the maximum surface de-

) . X . aday waves on the basis of the full Navier-Stokes equation.
flection versus the drive amplitude are systematically re-

; . This new algorithm does not suffer from the standard restric-
corded over a wide parameter range of drive frequency an e - ;
. . ions of the low dissipation limit and large filling thicknesses
sample viscosity.

The experimental data reveal that the perturbation anal as used by other previous simulations. Good quantitative

sis of Zhang and Vina [12] applies quantitatively to fluids ggreetme?tdWéth the enll.f[)'r('jc data 'i;%%/nd up to the highest
with a viscosity of less thar-50 ¢S and to very small drive investigated drive amplitudes @fna,=20%.

amplitudes of not more than 2.5%. Moreover, we observe
that the surface slope scales almost independently of the
drive frequency. This finding is also supported by the ana- We thank J. Albers for his support. This work is subsi-
lytical expression for the nonlinear coupling coefficiéhtis  dized by Deutsche Forschungsgemeinschatt.
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